

Paul, Hastings, Janofsky & Walker LLP 875 15th Street, N.W. Washington, DC 20005 telephone 202-551-1700 • facsimile 202-551-1705 • www.paulhastings.com

Atlanta Beijing Brussels Chicago Frankfurt Hong Kong London Los Angeles Milan New York Orange County Palo Alto Paris San Diego San Francisco Shanghai

Tokyo

Washington, DC

January 14, 2010 57739-000020

Marlene H. Dortch Secretary Federal Communications Commission 445 12th Street, SW Washington, DC 20554

Re: Comment Sought On Spectrum for Broadband; NBP Public Notice # 6, GN Docket Nos. 09-47, 09-51 and 09-137; AWS-2, WT Docket No. 04-356; AWS-3, WT Docket No. 07-195; 700 MHz Service Rules, WT Docket No. 06-150

Dear Ms. Dortch:

On January 13, 2010, Mark A. Stachiw of MetroPCS Communications, Inc. ("MetroPCS"), along with Michael Lazarus of Paul, Hastings, Janofsky & Walker LLP ("Paul Hastings"), and Barbara Baffer and Hossam H'Mimy of Ericsson Inc. ("Ericsson"), participated in a meeting with Julius Knapp and Alan Stillwell of the Office of Engineering and Technology regarding the above-referenced proceedings. The oral presentation in the meeting was consistent with the attached written presentation, copies of which were distributed in the meeting, as well as with the pleadings and *ex partes* filed on behalf of MetroPCS in the above-referenced proceedings.

In particular, MetroPCS and Ericsson discussed the various international bands, the speeds possible with various bandwidths under long term evolution ("LTE"), the factors that would affect the average speeds of a network and the ability of wireless carriers and manufacturers to implement LTE services at broadband speeds on bandwidths as narrow as 1.4 MHz. MetroPCS and Ericsson also discussed the ability of wireless carriers to aggregate spectrum across numerous spectrum bands in order to provide LTE wireless broadband services.

Kindly refer any questions in connection with this letter to the undersigned.

Respectfully submitted,

/s/ Michael Lazarus

Michael Lazarus of PAUL, HASTINGS, JANOFSKY & WALKER LLP

cc: (via email) Julius Knapp Alan Stillwell

LTE TECHNOLOGY CAPABILITIES

HOSSAM H'MIMY, Ph.D.
HEAD OF BB NETWORK & TECHNOLOGY STRATEGY
ERICSSON INC.

JANUARY 13, 2010

COMMON LTE EVOLUTION

ALIGNMENT FOR WCDMA/HSPA, TD-SCDMA (CHINA) AND CDMA

3GPP Track

3GPP2 Track

GSM WCDMA HSPA

TD-SCDMA

IS-95 CDMA2000 EV/DO

LTE FDD and TDD

2001 2005 2008 2010

LTE the Global standard for Next Generation

© Ericsson AB 2009 Commercial in confidence 2 2009-12-16

ERICSSON

CURRENT 3GPP BANDS

FDD					
Band	"Identifier"	Frequencies (MHz)			
1	IMT Core Band	1920-1980/2110-2170			
2	PCS 1900	1850-1910/1930-1990			
3	GSM 1800	1710-1785/1805-1880			
4	AWS (US & other)	1710-1755/2110-2155			
5	850	824-849/869-894			
6	850 (Japan)	830-840/875-885			
7	IMT Extension	2500-2570/2620-2690			
8	GSM 900	880-915/925-960			
9	1700 (Japan)	1750-1785/1845-1880			
10	3G Americas	1710-1770/2110-2170			
11	UMTS1500	1428-1453/1476-1501			
12	US 700	698-716/728-746			
13		777-787/746-756			
14		788-798/758-768			
17		704-716/734-746			

TDD					
Band	"Identifier"	Frequencies (MHz)			
33,34	TDD 2000	1900-1920 2010-2025			
35,36	TDD 1900	1850-1910 1930-1990			
37	PCS Center Gap	(1915) 1910-1930			
38	IMT Extension Center Gap	2570-2620			
39	China TDD	1880-1920			
40	2.3 TDD	2300-2400			

LTE deployed in new and existing bands

© Ericsson AB 2009 Commercial in confidence 3 2009-12-16

LTE KEY FEATURES

OVERVIEW

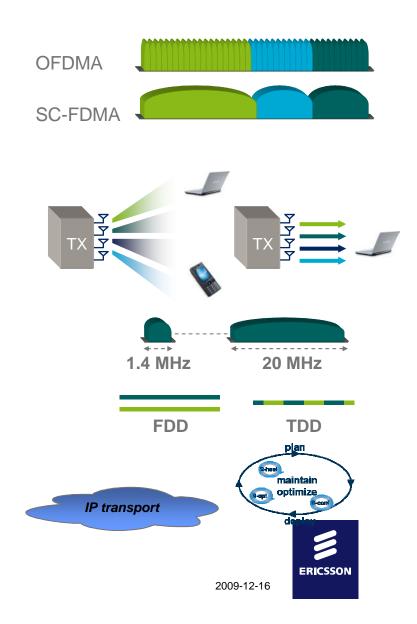
Downlink: Adaptive OFDM

Channel-dependent scheduling and link adaptation in time and frequency domain

Uplink: SC-FDMA with dynamic band width

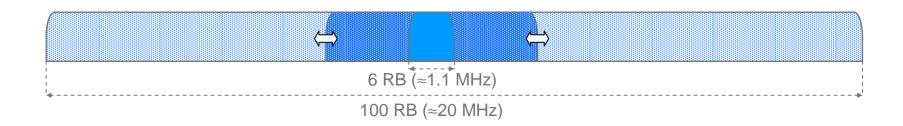
- Low PAPR → Higher power efficiency
- Reduced uplink interference (enables intra-cell orthogonality)

Multi-Antennas, both BS and terminal


- MIMO, antenna beams, TX- and RX diversity, interference rejection
- High bit rates and high capacity

Harmonized FDD and TDD concept

Maximum commonality between FDD and TDD


Simplicity

- All IP, SON

BANDWIDTH FLEXIBILITY

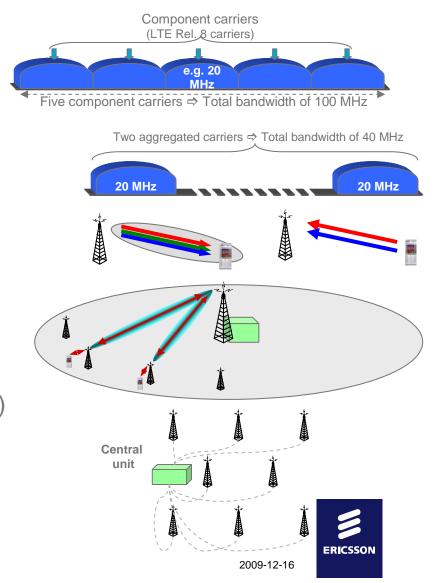
LTE physical-layer specification supports any bandwidth in the range 6 RBs to 100 RBs in steps of one RB (1 RB=12×15 kHz)

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration $N_{\rm RB}$	6	15	25	50	75	100

© Ericsson AB 2009 Commercial in confidence 5 2009-12-16

DATA RATES FOR FDD

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Peak Data rate DL (Mbps)	9	25	43	86	129	172
Peak Data rate UL (Mbps) 16QAM/64QAM	2.3/4	7.1/11	13/20	27/42	42/63	56/84



© Ericsson AB 2009 Commercial in confidence 6 2009-12-16

LTE ADVANCED (REL-10)

TECHNOLOGY COMPONENTS (PROPOSED/STUDY)

- Carrier aggregation for wider bandwidth
 - Up to 100 MHz
- > Spectrum aggregation
 - Complement to wider contiguous spectrum
- Extended multi-antenna transmission
 - Uplink spatial multiplexing
 - Combined spatial multiplexing + beamforming
 - Downlink extended spatial multiplex
- Relay functionality
- > Self-optimized/configured networks
- COordinated MultiPoint transmission (COMP)

ERICSSON

